I/O Streams In Standard C++
©2000, 2003 by Wayne Pollock,
Hillsborough Community College,
Tampa Florida USA
All rights Reserved.

Table of Contents

Background
2

Using IOStreams
2

Overview of IOStreams
4

Member Functions for Input and Output
5

Accessing the (Error) Status of a Stream
8

Formatting and Control of Streams
11

String Streams
14

Working with Files: Opening, Closing, Reading, and Writing
15

Working with (binary) Files: Positioning
17

Working with Files: Renaming and Deleting
20

Working with Directories
20

Using Standard Manipulators
21

Writing Your Own Inserters And Extractors
22

Writing Your Own Manipulators: Manipulators Without Arguments
24

Writing Your Own Manipulators: Manipulators With Arguments
25

References
26

Send comments, corrections, and requests for copy permissions to the author at
Pollock@acm.org

Background

In both C and C++, input and output (I/O) is viewed as a stream of characters (bytes) which flow into and out of a program’s memory. For simplicity all external sources of bytes are read and written as if they came from a disk file, even though your program might actually be reading and writing CD-ROMs, remote databases, tape drives, modems, and of course the keyboard and screen (collectively referred to as the console). Naturally, some features of writing to a file differ from writing to the screen; you can’t read from the screen, and you can’t rewind the keyboard. Still for the most part all I/O appears to the programmer as connected to disk files. The basic sequence of events to perform I/O is

1) Connect the external file or device to the program, using a stream. This is called opening a file. In C, you use fopen() to connect the external device or file to a FILE* variable, called the stream. Opening a file usually creates a buffer, which is used to improve efficiency.

2) Read from and write to the stream. Using functions such as fprintf(), fscanf(), feof(), and fseek(), you can send characters into a stream (i.e., write to a file), get characters from a stream (i.e., read from a file), get the file status, and move the file position indicator around. (The file position indicator determines where in a file the next character read will come from, or where the next character written will be placed.)

3) Disconnect the program from the external file or device. This is called closing a file. When the file or device is closed using the function fclose(), any characters held in buffers will be flushed to the file, bringing it up to date. The operating system will also note the file is available again for use.

Although traditional C style I/O is available in C++ by including the header file <stdio.h>, A better way is available called iostreams. This method has been evolving right along with the C++ language, and has only recently been finalized in the ISO C++ standard. It is preferable to standard I/O. Using iostreams provides improved elegance, extensibility, and flexibility. The improved elegance means fewer errors and quicker coding. To take advantage of the improved flexibility and extensibility, it is necessary to understand how iostreams works “under the hood”. First however, let’s see how to use the basic iostream classes.

Using IOStreams

Iostreams can be used by including the header file <iostream>. (On older C++ compilers, you must include <iostream.h>. Also, not all features work the same on older, pre-standard C++ compilers.) Iostreams is actually composed of several classes and some predefined stream objects. These predefined objects are cin, cout, and cerr. They correspond to the standard input, standard output, and standard error streams. (There is also a clog object nearly identical to cerr.) To read data from the standard input stream, you use the overloaded right-shift operator:

char c; int i; float f; char s[80];

cin >> c >> i; cin >> f >> s;

The second line above reads a single character into the variable c, then an integer into i, then a float into f, and finally a white-space delimited string into s. Several thing about these lines of C++ code are worthy of note:

1) Because the right-shift operator is an operator, several values can be read in a single statement (the character and the integer, the float and the string). The line reads from left to right, so first a character is read, then an integer is read.

2) Unlike scanf() and related functions, you use the actual variable and not its address! (So no more scanf errors because you forgot some ‘&’.) This is because the variables are passed by reference.

3) No format string is needed to indicate what kind of variable is used. This is because there are separate overloaded versions of the right-shift operator for each basic type of data. Getting characters from a stream (i.e., reading) is called extracting. By writing your own overloaded right-shift operator functions (extractors), you can extend the system to deal with user created types as well.

In a similar manner you can send output to a stream using the overloaded left-shift operator:

cout << c << i << "Hello, world!" << f << s;
Once again note the absence of a format string—one less thing to mess up. Output sent to cerr works similarly. Sending characters into a stream (that is, output) is called inserting. Just as with the right-shift operator, you can define your own version of the left-shift operator (inserter) to work with user defined types.

Input and output to files works in a very similar manner. First you must declare an iostream object; this opens the file and makes the connection between the external file or device and the iostream object. Next, you can use the iostream object just like cin and cout in the above examples to read characters from or write characters to the file (from here on, when I say file I mean an external file or device). When the iostream object is deleted, the file is closed. When you plan on reading from the stream, create an istream object; when planning to perform output, use an ostream object. (You can also declare an object to be use for both input and output.)

As a final example of the flexibility of this approach, note that an iostream object can be connected to a memory buffer (i.e., an array of characters) instead of to a file. The resulting object can then be used to format strings in a manner analogous to sprintf() and sscanf().

In addition to the overloaded left- and right- shift operators, the iostream objects support a number of member functions to control formatting, move the file position indicator, and obtain status information. Let’s look at some of the classes which make up these objects next. But first, a complete example:

#include <iostream>

#include <string>

using namespace std;

int main ()

{ string in_string;

 // Write a literal string to the standard output:

 cout << "Please enter your name: ";

 // Read the user's input:

 cin >> in_string;

 if (in_string.empty()) // then print error message:

 cerr << "### Error: Input string is empty!\a\n";

 else

 cout << "Hello there, " << in_string << "!\n";

 return 0;

}
Overview of IOStreams

The iostream objects are composed of many different classes. Some of the classes inherit from the others (the is-a relationship), while some are member objects of the iostream object (the has-a relationship). The following is a simplified view of the components of iostreams and how they inter-relate.

The class ios is the base class for all iostream objects. (Actually, class ios inherits from class ios_base; nearly all members I show of ios are really members of ios_base.) The classes istream and ostream are derived from it. Class ios contains information about the status of the stream such as error and EOF indications, format information such as the number of decimal places to print for floats (i.e., the precision), and a pointer to an object of class streambuf. A streambuf object is an intelligent buffer, holding data until needed by the program, and supporting the actual read and write operations (including functions similar to ungetc() and flush()). An ios object is therefore somewhat similar to the stdio struct FILE, and the streambuf object is likewise similar to the char* buf in the FILE struct.

[image: image1.wmf]ios

istream

ostream

iostream

streambuf

char buffer

real src

(or dest)

This figure shows the ios class is the base class for istream and ostream classes. To support input and output on the same stream, the class iostream inherits from both istream and ostream. (The solid arrows.) The horizontal arrow shows that all ios derived objects have a pointer to a streambuf object, which contains a RAM buffer and operating system reference to the actual file.

In addition to the classes shown in the figure, there are other classes that may be used: wistream is derived from istream, and wostream is derived from ostream. The w- versions provide input and output of wchar_t (two byte wide characters, such as Unicode).

There are several kinds of streambuf classes. The class filebuf is derived from streambuf and used to support disk file streams. To use istreams and ostreams for string formatting, a kind of streambuf object is used called a strstreambuf (string streambuf).

Some other classes omitted from the above figure include basic_ios, from which class ios (and others) are derived. To allow the programmer to create input and output streams connected to files there are the classes ifstream and ofstream, derived from istream and ostream respectively. (These classes are the ones that use the filebuf object.) A locale object pointer keeps track of cultural formatting information. (There is state and formatting information kept in ios too.)

Not all these classes are included in <iostream>. The string stream strstream classes are declared in the header file <sstream>. (On older systems, you may need to use <strstrea> or <strstream> instead.) The file stream classes are declared in <fstream> (which automatically includes <iostream>). Finally there is a header file which contains declarations for complex manipulators (those which take arguments) called <iomanip>. (Manipulators will be discussed in a later section.)

Member Functions for Input and Output

In the previous section we stated that there are versions of the left-shift operators (from class ostream) and right-shift operators (from istream) for all the basic types. These are: char, short, int, long (all integral types support signed and unsigned types as well), float, double, long double, char*, and void*. The char* corresponds to C-style strings: NULL delimited for output, and white-space delimited for input. Built-in types such as string can also be input and output. The void* type is used to input and output pointer values. Here is an example use:

int i = 20, *pi = &i;

char* s = "Hello";

cout << "i = " << i << ", address of i is: " << &i;

cout << ", address of i from pi: " << pi;

cout << ", address of string \"" << s << "\": " << s;

Addresses usually display in hex, something like “0x7ffff0b4”. Note the last line above prints “address of string "Hello": Hello” since the system treats a pointer to char as a string. You must use a typecast (or just cast) to print out the address of a C-style string:

cout << "address of s: " << static_cast<void*> s; // new cast

cout << "address of s: " << (void*) s; // old style cast

In addition to the overloaded left- and right- shift operators (the inserters, which are overloaded operator<<, and extractors, which are overloaded operator>>), classes istream and ostream define other member functions for more specialized purposes. Some provide alternative I/O methods, some provide support for writing your own inserters, extractors, and manipulators (discussed later), and there’s a few for other purposes too. These are all listed in the following tables for the sake of completeness. Class ios also has member functions used to set, clear, and test the various format and status flags stored there. These will be discussed in later sections.

It should be noted that unlike the overloaded left- and right- shift operators which perform formatted I/O, the functions in table 1 and table 2 provide unformatted I/O. This means that white space is not skipped before reading the next character. So:

char ch;

cin >> ch; // read the next non-white space character.

cin.get(ch); // read the next character no matter what it is.
Note that the precedence of operator << is much lower than some other operators, so you may need to use parenthesis to achieve the proper output:

int x = 10, y = 20;

cout << "The max of x and y is: " << (x > y) ? x : y << "\n";

cout << "The max of x and y is: " << ((x>y) ? x : y) << "\n";

The first line prints “The max of x and y is 0”. The second line prints “The max of x and y is 20”. Note that by default bool values such as (x>y) print as 0 (zero) or 1 (one).

Table 1: Additional ios Member Functions Used for Input

(Unless otherwise stated, all functions return an istream&. Likewise, they all set the failbit status flag (in ios) on EOF or error.)

int get()
Returns the next char if one is available. Otherwise sets the failbit and returns EOF.

get(char& ch)
Returns the next char in ch.

get(char* s, int n, char delim='\n')
Extracts characters from the stream into s until (1) n-1 characters have been stored; (2) EOF has been encountered; or (3) the next character to be stored equals the delim character, which is not stored in s, but is left unread on the input stream. A NULL (zero) character is then stored to mark the end of the string.

get(streambuf& sb, char delim='\n')
Similar to above, except the characters are put directly into some ostream’s streambuf sb. (This is an efficient way to copy one file to another.) Note “cin >> sb;” works too!

getline(char* s, int n, char delim='\n')
Extracts characters from the stream into s until (1) n-1 characters have been stored; (2) EOF has been encountered; or (3) the next character to be stored equals the delim character, which is not stored in s, but is removed from the input stream. A NULL (zero) character is then stored to mark the end of the string.

read(char* s, int n)
Extracts n bytes (actually characters) from the stream into s, unless EOF is encountered (in which case fewer than n characters are stored). No NULL character is appended.

int peek()
Returns the next character without extracting it, so the next input operation returns the same character. If no character is available on the stream, peek returns EOF.

ignore(int n=1, int delim=EOF)
This function extracts characters and discards them until any of the following occur: (1) n characters are extracted; if n == INT_MAX (which is defined in the header file <limits.h>), no maximum is count is used. (2) EOF occurs, in which case eofbit is set in the ios status; (3) the last character extracted equals the character delim (which can never happen if delim is set to EOF). Note that “cin.ignore(INT_MAX);” will throw away any type-ahead input from the keyboard.

int sync()
This function can be used to flush an istream. For some kinds of istream this can’t be done properly; sync returns zero on success and –1 on failure. There is no cin.flush() function.

bool rdbuf().in_avail()
The member function rdbuf returns a reference to the istream’s streambuf. That in turn has a member in_avail which tells you when there are any characters in the buffer. (So a call to cin.get() would not block.)

putback(char ch)
This function allows you to push back a just read character ch onto the input stream, so that the pushed-back character is the next character extracted. You must be certain to push back the same character that was last extracted! This function may fail (for instance if the buffer was flushed, or if the file position indicator has been moved) so it is better to use peek(). On failure, badbit is set in the ios status.

unget()
Pushes back the last character read (similar to putback above).

int gcount()
Returns the number of characters extracted by the last unformatted input operation (e.g., get or getline).

operator>>(istream& (*pf)(istream&))

operator>>(ios& (*pf)(ios&))
These strange-looking versions of the overloaded right-shift operator are intended to allow the use of special functions called manipulators. The first form allows the use of manipulators such as ws, which is a function declared as istream& ws(istream&), and can be used as “cin >> ws;”. This will skip over any white space in cin. The second form allows the use of manipulators such as dec, which is a function declared as ios& dec(ios& st) and can be used to change the format and status flags in the ios part of the istream object. Using dec as “cout << dec;” will cause the format flags to be set to decimal output. (The manipulators hex and oct behave similarly, producing hexadecimal and octal output.)

Table 2: Additional ios Member Functions Used for Output

(Unless otherwise stated, all functions return an ostream&. Likewise, they all set the badbit status flag in ios on error.)

int put(char ch)
This function inserts (outputs) a single character into an ostream. (If it fails, put sets badbit in the ios status, and returns EOF.)

write(const char* s, int n)
Inserts n bytes (actually characters) from s onto the ostream.

flush()
Causes the associated streambuf object to be flushed (i.e., send all pending output to the external file or device).

operator<<(ostream& (*pf)(ostream&)

operator<<(ios& (*pf)(ios&)
These functions support the use of manipulators such as endl or ends in a similar way to the operator>> functions described in Table 1.

There is a potential problem with using these functions in a C++ program. The objects cin, cout, and cerr (and clog) are objects constructed sometime before main() is invoked. But if you create a global object, can you use cin, cout, and cerr in its member functions (especially its constructors)? By an amazing feat of programming by the implementers of iostreams, yes you can. There is one case however that you must handle yourself: If the constructor of a global static object in one file calls a function f defined in another file, and f tries to use cin, cout, or cerr, it will likely find that these objects haven’t been constructed yet.

If such a nasty situation could arise with some function f in your program (which is very unlikely), you can force the system to create these iostream objects in a special way, by creating a dummy local object of class ios::Init like this:

void f ()

{ ios::Init dummy_object; // Force iostreams to initialize

 cerr << "May the Force be with you!" << endl;

 // ...

}

Finally, note that for efficiency reasons, there are no ios::get or ios::getline functions that take C++ strings as arguments. However <string> declares std::getline functions which can be used to read chars (ignoring leading white space) up to a newline (or optional 3rd delimiter argument):

string line; while(getline(cin, line)) { ... }

Accessing the (Error) Status of a Stream

When a problem occurs with a stream, the function which detected the problem will set a bit in a status word stored in the ios part of the stream object, called ios::state. This is just an int in which the various bits have been assigned the following meanings:

class ios

{

public:

enum iostate

{
goodbit, // all other bits zero means no errors.

eofbit, // End Of File was encountered during a read.

failbit, // an I/O operation failed.

badbit // a loss of stream integrity, such

 // as an unrecoverable read error.

};

// ...

};

Note that goodbit is not actually a bit in ios::state; rather it can be used to test if any bits are set. state is a private member of class ios and cannot be accessed directly. However there are a number of ways to access the state of an iostream object, as shown below.

The difference between fail() state and the bad() state (ios::failbit is set or ios::badbit is set) is subtle: When the state is fail(), it can be assumed the stream is uncorrupted and no data has been lost. So “int i; cin >> i;” will set ios::failbit if the next character is not a digit, or if the read fails due to EOF.

However, when the state is bad() all bets are off.

Objects derived from ios have an overloaded conversion (typecast) operator to a void*, which returns NULL (zero) if some error bit is set, and a non-NULL (non-zero) value if all bits are zero (that is, the status is OK). Since zero is interpreted in C++ as false and non-zero as true, this operator can be used in if statements and loops like this:

char c;

while (cin.get(c))

 cout << c;

Note the use of the get() member function. Remember that “cin << c” would skip white space characters, get() reads the next character regardless. (An alternative is to use the manipulator noskipws to cause cin to not skip over white space; this will be covered in a later section.) A similar loop can be used to read in other types such as ints (where it is ok to skip over white space):

int id_num;

while (cin >> id_num)

 cout << "The id number is: " << id_num << endl;

There is also an overloaded logical NOT operator (operator!) that returns the reverse status of the typecast operator above, and is mostly useful in if statements for robust input:

string name;

cin >> name;

if (! cin)

cerr << "Error when reading name!\a" << endl;
The next example shows how to use line at a time input. There are two ways to accomplish this: get(str, sizeof(str)) reads up to the end of line (or other delimiter you can specify), but doesn’t include the delimiter; it is left unread. The getline(str, sizeof(str)) function reads up to the delimiter, stores the string in str and then throws the delimiter away. This function is usually the easier function to use:

char line[256]; // Note we can't use a C++ string here!

int line_count = 0;

while (cin.getline(line, sizeof(line)))

{ ++line_count;

 cout << line << "\n"; // Don't forget the delimiter!

}

cout << "\n" << "Number of lines read: " << line_count << "\n";

The above examples work because an attempt to read past the end of the file will set the ios::failbit in addition to setting the ios::eofbit. Simply being at the end of a file is not considered an error. (Also note reading the last byte in a file does not set the eofbit; only an attempt to read more causes the eofbit to be set.) In addition there are a number of member functions that allow you to test individual bits of the status, or to set and clear the status bits. These are mostly useful when writing your own inserters, extractors, and manipulators. They are described in Table 3 below:

Table 3: Accessing the Stream Status

iostate rdstate()
This function returns the value of the ios::state data member.

int eof()
Returns true (non-zero) if ios::eofbit is on. Actually these bit functions return “(ios::state & ios::eofbit)”.

int fail()
Returns true if ios::failbit is on or ios::badbit is on.

int bad()
Returns true if ios::badbit is on.

int good()
Returns true if no bits are on.

operator void* ()
Returns a NULL pointer (true) if the ios::badbit or ios::failbit bits are set on. (Remember an attempt to read beyond EOF will cause the ios::failbit to be set.) This is the operator used in if and loop statements such as “if (cin) ...”.

int operator! ()
Returns zero (false) if ios::badbit and ios::failbit are both off (unset).

void clear(int state_arg=ios::goodbit)
Assigns state_arg to ios::state. Note that if the associated streambuf pointer is NULL, using clear will cause ios::badbit to be set.

void setstate (iostate bit)
This functions turns on the single bit bit in ios::state, leaving the other bits unchanged.

iostate exceptions()
Returns the value of the data member except. (See below.)

void exceptions(iostate arg)
Assigns arg to except, then calls clear(). (See below.)

There is an additional iostate data member in ios called except. This is used to indicate which errors should cause exceptions to be thrown. If an error occurs that sets a bit in ios::state, and that bit matches a corresponding bit in except, then an exception will be thrown. All iostreams functions can throw exceptions of type failure. (So can any C++ library function for that matter.)

An example illustrating the use of these functions is to detect and recover from a user typing a ^Z (control-Z, or EOF mark; on UNIX systems use a ^D for EOF) at the keyboard:

if (! cin) // something's wrong!

{ if (cin.eof())

 cin.clear(); // reset the eof flag.

 else

 cerr << "Unrecoverable input error!\n";

}
Formatting and Control of Streams

Beside the streambuf pointer, iostate, and except members, class ios contains other data members to control the formatting of the stream. None of these data members are directly accessible; you can examine and change their values through public member functions (and manipulators). The data members are described in table 4. Note that the names of these private data members are implementation defined, and are provided here only for the purpose of discussion:

Table 4: Private Data Members of Class ios
streambuf* sb
Usually points to a filebuf object. (The rdbuf function returns a reference to *sb. streambufs have several member function available, not discussed here.)

ios::iostate state
Contains the stream’s status information.

ios::iostate except
Determines which errors will cause exceptions.

ostream* tiestr
Points to an output stream which is tied to (synchronized with) this stream. If this is set to a non-NULL value, the ostream it points to will be “flush”ed before any insertion or extraction. Although rarely used by programmers, it is how cin and cout are defined (so “cout << "Enter value: "; cin >> x;” will print the prompt message when the input is attempted).

int wide
Specifies the minimum field width (minimum number of characters) to be used on some formatted output operations.

int prec
Specifies the precision (number of digits after the decimal point) to generate on some formatted output operations. Note that the rightmost digit is always rounded.

char fillch
Specifies the character to use to pad (or fill) some formatted output operations to the specified field width. (The default is a space. You might change this to 0 (zero) if you wanted leading zeros, for id numbers or zip codes.)

ios::fmtflags fmtfl
The formatting flags are stored in this enumeration type (which is actually a long). Each format flag is represented by a single bit, however some of the flags form groups. Only one flag within a group can meaningfully be set at one time. Setting more than one flag in a group to on (or none of them) leads to undefined behavior! In the following list, the eight on/off flags are not in any group; they can be turned on or off independently of any other flags. The remaining flags belong to one of three groups: the basefield group, the floatfield group, and the adjustfield group. (These group names are also defined in the enumeration.)

	adjustfield
	Effect

	ios::left
	Left align values; pad on the right with the fill character if the value is shorter than the field width. (Ex: “-123 “)

	ios::right
	Right align values; pad on the left (similar to ios::left) (Ex: “ -123”)

	ios::internal
	Adds any needed fill characters after the sign or base indicator, but before the value (Ex: “- 123”)

	basefield
	Effect

	ios::dec
	Inserts and extracts integers in base 10 (the default). (Ex: “27”)

	ios::hex
	Inserts and extracts integers in base 16 (hexadecimal). (Ex: “0X1B”)

	ios::oct
	Inserts and extracts integers in base 8 (octal). (Ex: “033”)

	“automatic” (all 3 bits are zero.)
	Inserts integers in base 10; causes an extractor (a read operation) to determine the base from the form of the input. (“0ddd” = octal, “0xddd” = hex)

	floatfield
	Effect

	ios::fixed
	Output floating point values in fixed notation, with precision field decimal places. (Ex: “123.45”)

	ios::scientific
	Output floating point values in scientific notation, with precision field decimal places. (Ex: “1.2E2”)

	“automatic” (both bits are zero.)
	Use which ever format that takes up less space.

	On/Off
	Effect

	ios::boolalpha
	Output bool values as “true” and “false”. (Default is “0” and “1”.)

	ios::showbase
	Prefix hex numbers with “0X”, and octal numbers with “0”.

	ios::showpoint
	Forces floating point output to show trailing decimal point (and zeros). (Ex: “123.”)

	ios::showpos
	Forses output to show a plus sign for positive values. (Ex: “+123”)

	ios::skipws
	Causes extractor to skip leading white space.

	ios::stdio
	Forces the stream to be synchronized with the stdio I/O system. (So calls to scanf, printf, etc., can be intermixed with insertions and extractions.)

	ios::unitbuf
	“Unit Buffering” causes the stream to be flushed after each insertion. (See section on buffering.)

	ios::uppercase
	Use A–F and X for hexadecimal, and E for scientific notation (instead of a–f and x and e).

Table 4.a: iostream format flags by group

The members sb, iostate, and except have been discussed in previous sections. The tiestr, wide, prec, and fillch members can be examined and set using the ios member functions listed in table 5.

Table 5: Accessing Data Members of Class ios

int width()
Returns the current field width (from wide).

int width(int w)
Sets the field width to w and returns the previous value of wide. The field width will limit the length of strings extracted on an istream (so “char s[8]; cin.width(3); cin >> s;” will extract two characters (plus the NULL to end the string) into s).
Note: For output, the field width is set to zero after each insertion! A zero value here means to use just the minimum amount of space necessary to output the value.

char fill()
Returns the current fill character from fillch.

char fill(char f)
Sets the fill character to f and returns the previous value. (These two routines actually work with ints not chars, so multi-byte character sets such as Unicode can someday be used.) The default value is a space, but zero is often used.

int precision()
Returns the current precision value from prec. The default value is 6, which is the limit of accuracy of a float.

int precision(int p)
Sets the precision to p and returns the previous value.

ostream* tie (ostream* s)
Sets the tied ostream (in tiestr) to s and returns the previous value. (This is only useful for working with interactive files.)

fmtflags flags()
Returns all the current format flag settings.

fmtflags flags(fmtflags f)
Sets the format flags in fmtfl to f and returns the previous value.

ios& copyfmt(const ios& arg)
This function copies all formatting information from arg to *this (that’s everything in ios including state, except, wide, etc., except sb). It can be used like this:

const ios default_ios;

ios saved_format;

save.copyfmt(cout); // save current info.

cout.copyfmt(default_ios); // revert to defaults.

cout << setbase(16) << showbase << uppercase;

... // Use modified cout object.

cout.copyfmt(saved_format); // restore old info.

fmtflags setf(fmtflags flags)
Sets the bits in fmtfl indicated in flags (by bitwise ORing flags with fmtfl), and returns the previous value. Use this ios member function to turn on the on/off flags only.

fmtflags setf(fmtflags flags, fmtflags group)
Sets the bits in fmtfl indicated in flags (by bitwise ORing fmtfl with flags & group), and returns the previous value. This ios member function turns on the indicated flag in group while turning off (clearing) the other flags in that group.

void unsetf(fmtflags flags)
Clears the bits in fmtfl indicated in flags. Use this ios member function to turn off the on/off flags only.

streambuf* rdbuf()
Returns sb (the streambuf object that sb points to).

streambuf* rebuf(streambuf* new_sb)
Assigns new_sb to sb, then calls clear() before returning the previous value of sb.

String Streams

Instead of connecting sb to a filebuf, it can be connected to an array of characters. Doing so allows you to extract (or insert) characters from a string. This can be very useful and is commonly seen. In order to properly handle reading in records of data, we should assume that some records might be missing some fields. In that case, we need some way to skip to the next record. When reading user input, it often works best to read in a line of input, then throw away any characters you don’t need (typically the newline at the end). Finally, an input string stream can be used to tokenize a line of input:

#include <sstream>

#include <string>

using namespace std;

int main ()

{ char buf[256];

 for (;;)

 { cout << "type in data: ";

 cin.getline(buf, sizeof(buf));

 if (! cin) break; // end of input reached

 istringstream iss(buf);

 string word;

 while (iss >> word)

 cout << word << '\n'; // print one word per line.

 }

 return 0;

}

You can use iss to extract formatted numbers too (assume number is an int):

if (! iss >> word >> number) err(); // handle bad record.

You can use an ostreamstring to format strings or create records. Note the use of the member function str to return the constructed string:

ostringstream oss;

oss << "Wayne" << "\t" << 41 << "\n"; // Name and age record.

cout << "The record is: " << oss.str();

Working with Files: Opening, Closing, Reading, and Writing

In order to better understand how the following classes and member functions work together, the following explains how the operating system (OS) interacts with your C++ program when reading and writing files and devices.

The OS includes buffers of its own to improve efficiency. In C++ you can control the buffers your code creates (in streambuf), but not the OS buffers. Different operating systems have different methods of allowing your programs to control the OS buffers. In DOS bases systems, there are functions that allow you to grab the next character available without waiting for the OS buffer to fill up (getche()), and even non-blocking functions that can tell you which keys (if any) the user has depressed on the keyboard. Under the UNIX OS, your program can turn the OS buffers on or off as needed.

The most common use of files is shown in the code sample below. However, there are several different member functions and constructors available. An fstream can be created using a default constructor. In this case we must explicitly use the open member function to open a file. (Having open and close member functions allows us to reuse an fstream object for several files, however I find that more confusing than just using several fstream objects.) Note in this case, using “if (!file)” doesn’t work to see if the file was opened, since the state of an fstream created in this way is always good! You must use the fstream::is_open() function to see if a file is currently open or not.

When constructing an fstream, you can supply a file name (or use open later). This file name is in an implementation-defined format. For DOS based systems you might use “c:\work\memo.txt”, but for Macintosh systems you might use “HardDisk::work:memo.txt” and for UNIX systems you might use “/work/memo.txt”. There is no portable way to represent the name of a file in C++, nor is there any standard way to find out what system you are using. (How annoying!) Even worse, there is no support for working with directories at all. The <cstdio> (the old name of which is <stdio.h>) library does include some functions for renaming (“rename()”) and deleting (“remove()”) files, but that is all. (Fortunately, many C++ compilers include POSIX support, which is a standard that includes many missing pieces of the C++ standard library, including standard directory support. Working with directories using POSIX will be explained in a later section.)

Besides supplying a file name to the fstream constructor, a second argument can be provided to specify the mode of the file. The system defines ifstreams for input and ofstreams for output. An fstream can be used to create a file open for both at once. (By supplying the right mode arguments, you could create an ifstream for output or an ofstream for input. Please don't do that for any programs I might have to read!) The following list shows the standard file modes, although additional non-standard modes may be available depending on your OS and compiler. All the modes are defined as part of ios::openmode. To specify a combination of modes, you use bit-wise ORing of the mode flags, as in:

ofstream file("foo.txt", ios::binary | ios::app);
The standard modes are listed in table 6 below.

Table 6: List of Standard Mode Arguments for Opening Files

app
Append mode. This mode flag forces all writes to first move the put FPI to the end of the file.

ate
(Pronounced “AT End”), it means to position the FPI at the end of the file initially, rather than the default of at the beginning.

binary
I/O is to be done in binary mode, rather than the default of text mode. In text mode, some conversions may take place. For example, text mode I/O on DOS based systems typically replace “\n” with “\r\n” on output, and the reverse on input. Other possibilities are the expansion of tab characters or the special treatment of characters such as form-feeds or control-Z.
Using text-mode is risky since the data written by one system may not correspond to the same data read by another system. Such conversions make it impossible to set the FPI (discussed in the next section) accurately, or even know exactly how many characters are left in a file.
The bottom line: If your program creates files only your program needs to read, use binary mode all the time. If creating text files another program may need to read (such as NotePad), use text-mode but be aware that you shouldn’t move the FPI.

in
open for reading. (This mode is the default for ifstreams.)

out
open for writing. (This mode is the default for ofstreams.)

trunc
On open, truncate the file to zero length. (This mode is specified by default for ofstreams.) This means if the file previously existed, it will immediately be clobbered by this open.

To see if a file exists, a commonly used technique is to try to open it for reading. If this fails you can assume the file doesn't exist. If the open works, the file does exist (and you should close it).

Remember, opening a file for output will erase that file if it already exists. This is referred to as clobbering the file.

Modes are often used in combination when opening files. To combine several modes, the C++ “|” (bitwise or) operator is used. For example:

// Open myfile for update mode (both reading and writing):

fstream myfile("foo.dat", ios::in | ios::out);

// open myfile for appending-only:

ofstream myfile("foo.dat", ios::out | ios::app | ios::ate);

Here is a complete program to illustrate how to create and read files:

#include <fstream>
// automatically includes <iostream>

#include <string>

using namespace std;

int main ()

{
ofstream fout("foo.dat"); // foo.dat is created.

if (! fout) // did the open work?

{
cerr << "Can't open file for output!\n";

return 1;

}

fout << "Hello" << 17 << " " << hex << 17 << endl;

fout.close();

ifstream fin;

 fin.open("foo.dat", ios::binary);

if (! fin.is_open() || ! fin) // Did the open work?

{
cerr << "Can't open file for input!\n";

return 1;

}

string s;

int num1, num2;

fin >> s >> num1 >> num2;

cout << "extracted: " << s << " " << num1 << " " << endl;

fin.close();

return 0;

}

Working with (binary) Files: Positioning

Aside from the buffers, the OS maintains a file position indicator (or FPI) which is a pointer into a file that determines where the next character is read from (or written to). For keyboard input, the FPI is always set to the end of the stream and cannot be changed. But for regular files you can control the FPI. This is quite handy; if your file consists of fixed size records, you could move the FPI to the start of any record and then do a read (or write to update) of a single record. To re-read a file the FPI can be moved to the beginning, and to append to a file the FPI can be moved to the end. You can also create a "bookmark" to the current point, add some data to the end of the file, and later reset the FPI to that point.

Recall file streams come in three varieties: ifstream (for input), ofstream (for output), and fstream (for both). For istreams the FPI is called the get pointer, while for ostreams the FPI is called the put pointer. fstreams have one of each. The member functions for working with the FPI each have a g or a p in their name to indicate which FPI is used.

An important point about files is that you can never insert characters in the middle. Files support overwriting existing data, and growing the file by writing new data at the end. So how is data inserted? Usually by creating a new file, copying the initial part of the old file, appending the new data, and finally appending the rest of the original file. Then the original file is replaced with the new file.

Another important point concerns files open for both reading and writing. The OS usually requires an explicit setting of the appropriate FPI before switching from reading to writing. This resets the buffers and other flags the OS keeps. So after a series of reads, before we can write we must set the put FPI. Now we can write some data. But must we must set the get FPI before doing another read.

Although C++ is defined with separate get and put FPIs, it appears most OSes only keep a single FPI per file. So setting one will set the other also. (You should use the tellp() and tellg() functions defined below to keep track of where the FPI was.)

The first byte of a file is stored in position zero, so one way the think of files is as a very long array of bytes. Setting FPI can be thought of as the same as setting an index into this array. The positioning of an FPI is actually done by member functions of a streambuf, but ifstream and ofstream have some member functions to support the most common tasks. Note that calling these functions has no effect if the underlying file doesn’t support the operation (such as setting the get FPI back to zero on keyboard input streams).

Finally, note that positioning only works with binary files (files opened with the ios::binary mode). The system can’t track the FPI if newlines may be either one or two bytes, and tabs may be either one or eight bytes! In fact, if any file positioning functions are used, C++ may open the file in binary mode even if you don’t specify ios::binary!

There are a couple of classes defined to record a position in a file:

ios::pos_type
Records an absolute position in a file

ios::off_type
Records an offset from some position in a file. Usually this is simply an integer. (To support very large files, this could be some struct type.)

The file positioning functions are:

ios::pos_type istream::tellg()
This function returns the current value of the get FPI. By saving this value in a variable, you can later return to the same spot.

istream::seekg(ios::pos_type saved_position)
This sets the get FPI to saved_position.

istream::seekg(ios::off_type offset, ios::seek_dir from_where)
This function moves the get FPI offset characters from
The members of ios::seek_dir are:
ios::beg
The beginning of a file
ios::cur
the current position in a file
ios::end
The last position (the end) in a file

There are also nearly identical member functions tellp() and seekp() that use the put FPI.

Here are some examples using these classes and members:

// ...

// mark the current position in some file open for writing:

ios::pos_type book_mark = some_file.tellp();

// ...

if (Undo_flag)

 some_file.seekp(book_mark); // return to saved position

Assume a file “foo.dat” exists with the following contents: ABC DEF GHI
(13 characters including two spaces and one return/newline pair (“\r\n”) at the end.) Then the following program prints “BIG”. (Remember istream::get() advances the FPI by one each time):

#include <fstream>

using namespace std;

int main ()

{ char c;

 fstream in_file("foo.dat", ios::in|ios::binary);

 if (! in_file) return -1; // Can't open file

 in_file.seekg(1, ios::beg);

 c = (char) in_file.get(); // gets a "B"

 cout << c;

 in_file.seekg(-3, ios::end); // ios::end - 2 is the '\r'.

 c = (char) in_file.get(); // gets a "I"

 cout << c;

 in_file.seekg(-3, ios::cur);

 c = (char) in_file.get(); // gets a "G"

 cout << c << '\n';

 in_file.close();

 return 0;

}

Working with Files: Renaming and Deleting

As mentioned previously the header file <cstdlib> provides a remove() function and a rename() function:

rename("foo.dat", "bar.dat"); // changes foo.dat to bar.dat

remove("bar.dat");

Working with Directories

Neither C nor C++ provide any support for working with directories. However the POSIX standard does provide several functions for dealing with directories, and most compilers (including Borland C++ 5.02) provides some support for them. In Borland you include the headers <direct> and <dirent> (in POSIX the functions in <direct> are found in <unistd>). The following program is nonsense but shows the most common tasks. Note the non-standard Borland mkdir function doesn’t take a second argument (easily fixed by editing the <direct> header file):

// Demo of POSIX C/C++ directory routines. These work in Borland C++

// too (only not quite standard), and perhaps MS Visual C++ too.

//

// (C) 1999 by Wayne Pollock, Tampa FL USA. All Rights Reserved.

#include <iostream>

#include <direct> // in POSIX, <unistd>

#include <dirent>

using namespace std;

int main ()

{

 char buf[256] = "."; // dot means the current directory.

 char* newDirName = "NewDir";

 if (chdir("\\temp") == -1) // note the double backslash!

 cerr << "Can't change the current directory!\n";

 if (getcwd(buf, sizeof(buf)) == NULL)

 cout << "Can't get current working directory!\n";

 cout << "The current working directory is " << buf << ".\n";

 if (mkdir(newDirName) != 0) // POSIX requires a 2nd arg "mode"

cerr << "Can't create a new directory!\n";

 DIR *dir;

 dirent *ent;

 if ((dir = opendir(buf)) == NULL)

cerr << "Unable to open directory!\n";

 cout << "\n Files in " << buf << ":\n";

 while ((ent = readdir(dir)) != NULL)

 cout << "\t" << ent->d_name << endl;

 // use: rewinddir(dir) to scan the directory again.

 // Note: you can use stat(file) to return info about a file.

 if (closedir(dir) != 0)

 cerr << "Unable to close directory!\n";

 if (rmdir(newDirName) != 0)

 cerr << "Can't delete directory " << newDirName << "!\n";

 return 0;

}

Using Standard Manipulators

Manipulators are used to change formatting parameters on streams and to insert or extract certain special characters. Manipulators are functions designed to be used with the insertion (<<) and extraction (>>) operators on stream objects, for example:

cout << boolalpha;

Using manipulators is often more convenient than using stream member functions. Manipulators can also be called as any other function using a stream object as argument, for example:

boolalpha(cout);

All manipulators are defined in <iomanip> according to the most current references I have. However, in older compilers manipulators are declared in <iostream>. Note older compilers (such as Borland 5.02 or MS Visual C++ 6.0) don’t provide the complete list; so your mileage may vary:

dec
oct

hex
for either istream or ostream
ws
eats white space from an istream, useful when noskipws has been used

skipws

noskipws
turns on or off the automatic skipping of white space for formatted input

endl

ends
for ostreams; the ends is like endl but for a strstream
flush
for ostreams. This outputs the proper type of line termination for your system
boolalpha
noboolalpha
for ostreams, shows bools as either “0” and “1” or “true” and “false”

showbase
for ostreams, shows octal numbers with leading zero and hex with “0x”
noshowbase
showpoint
for ostreams, shows decimal point even when precision is set to zero, and
noshowpoint
show trailing zeros.

showpos
for ostreams, shows “+” for positive numbers explicitly
noshowpos

uppercase
for ostreams, shows “E” and “X”, and “A-F” (for hex)
nouppercase
lowercase letters are used for these.
left

right

internal
for ostreams, shows where padding goes (internal means between sign & num)
fixed

scientific
for ostreams, shows floats as “123.45” or as “1.2345E02”

The remaining manipulators are in <iomanip> (even in older compilers) and take arguments:

setbase(int n)
Sets the base to n, where n must be 0, 8, 10, or 16.

setioflags(fmtflags f)
Sets the format flags indicated by f.

resetioflags(fmtflags f)
Clears the format flags indicated by f.

setfill(int ch)
Sets the fill character to ch. Used for ostreams only.

setprecision(int n)
Set the precision to n.

setw(int n)
Perhaps the most used manipulator, setw sets the field width to n. Remember that after each insertion the width is set back to its default value of zero.

Writing Your Own Inserters And Extractors

When defining your own data types (i.e., your own classes and structs) it is often convenient to provide easy input and output of objects of these types. Output of objects (called inserters since the data is inserted into an output stream) can provide formatting of your objects. Input of objects (called extractors since the data is extracted or pulled from an input stream) can provide data validation, caching (when data is expensive to fetch, across a wide area network for instance), and data format conversion. Typically extractors are much more difficult to write than inserters, because input operators usually require extensive error checking if done right.

Creating inserters and extractors requires extending the iostream system. This is done by creating new global overloaded operator functions. These functions are then declared as friend functions to your classes. The example below illustrates the technique for a class Date:

// Date.cpp

#include <iostream>

#include <iomanip>

using namespace std;

class myDate

{ int month, day, year;

 static const int num_days[13]; // The entries 1-12 are used.

 public:

 myDate (int m = 1, int d = 1, int y = 1995) :

 month(m), day(d), year(y) {}

 friend ostream& operator<< (ostream& s, const myDate& d);

 friend istream& operator>> (istream& s, myDate& d);

};

const int myDate::num_days[13] =

{ 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

ostream& operator<< (ostream& out, const myDate& d) // Inserter.

{

 if (out) // Do nothing if output stream is in an error state.

 {

 long oldFlags = out.flags(); // Save currnet formatting flags

 out << dec << setfill('0');

 out << setw(2) << d.month << "/" << setw(2) << d.day << "/";

 out << setw(2) << (d.year > 1900 ? d.year-1900 : d.year);

 out << endl;

 out.flags(oldFlags); // Restore previous formatting

 }

 return out;

}

istream& operator>> (istream& in, myDate& d) // Extractor.

{ char c = '\0';

 const myDate old_date = d; // Save old value in case of error.

 if (in) // Only input if input stream is OK.

 try

 { if (!(in >> d.month)) throw 1;

 if (d.month < 1 || d.month > 12) throw 2;

 if (!(in >> c)) throw 3;

 if (c != '/') throw 4;

 if (!(in >> d.day)) throw 5;

 if (d.day < 1 || d.day > myDate::num_days[d.month]) throw 6;

 if (!(in >> c)) throw 7;

 if (c != '/') throw 8;

 if (!(in >> d.year)) throw 9;

 if (d.year <=0) throw 10;

 if (d.year < 100) d.year += 1900; // ie, 2 digits read.

 } // End of try block

 catch (int)

 { in.clear(ios::failbit); // Indicate failure.

 d = old_date; // Restore original value of date.

 }

 return in;

}

int main ()

{ myDate date;

 cout << "Default value of a date is: " << date << endl;

 cout << "Enter a date: ";

 if (! cin >> date)

 { cerr << "***Error! Invalid date entered!\a\n" << endl;

 cin.clear(); // This clears all iostate flags.

 cin.ignore(999, '\n'); // Skip rest of bad date (to EOL).

 }

 cout << "The date you entered is: " << date;

 return 0;

}
Note: Prior to ISO standardization, C++ had support functions opfx, osfx, ipfx, and isfx. These were used to initialize and test the stream state prior to the input/output operation. (The names mean input/output prefix/suffix.) The were to be used this way (output is similar):

istream& operator>> (istream& in, myClass& myObject)

{ if (ipfx()) { ...; isfx(); } return in; }

These functions apparently did not become part of the C++ standard. Stroustrup implies (but doesn’t state) that the use of iostream::sentry class is to be used instead (output is similar):

istream& operator>> (istream& in, myClass& myObject)

{ sentry s(in);

 if (s)

 { ...;

 }

 return in;

}

Writing Your Own Manipulators: Manipulators Without Arguments

Manipulators that do not require any arguments are very easy to create. The following example shows how to write and use them. Such manipulators are often used to easily set up combinations of formats:

#include <iostream>

using namespace std;

inline ostream& Left (ostream& os)

{ os.setf(ios::left, ios::adjustfield); return os; }

inline ostream& Right (ostream& os)

{ os.setf(ios::right, ios::adjustfield); return os; }

inline istream& Flush (istream& in)

{ int num_of_chars_left = in.rdbuf()->in_avail();

 return in.ignore(num_of_chars_left);

}

inline istream& Rewind (istream& in)

{ in.clear(); in.seekg(0); return in; }

int main ()

{ char buf[256];

 cout << "Enter a word: ";

 cin >> buf;

 cout << "The word was \"" << setw(12) << Left << buf << "\".\n";

 cin >> Flush;

 cout << "Type in a line of text: ";

 cin.getline(buf, sizeof buf);

 istrstream in(buf);

 cout << "Here is your text:\n";

 while (in >> word) cout << word << " ";

 cout << endl;

 in >> Rewind;

 cout << "\n\nHere is your text again:\n";

 while (in >> word) cout << word << " ";

 return 0;

}

Writing Your Own Manipulators: Manipulators With Arguments

Writing manipulators that take arguments (these are sometimes referred to as effectors) are only slightly more difficult to write. Essentially you create a class with one or more constructors that takes the arguments, stores the result in private data, and has a friend operator<< (or operator>>) for your class to output (input) the data. The following example shows the technique by creating a manipulator that shows the bit pattern of its argument:

#include <climits>

class bits

{ unsigned long num;

 public:

 bits (unsigned long n) : num(n) {}

 friend ostream& operator<< (ostream& out, const bits& b);

};

ostream& operator<< (ostream& out, const bits& b)

{ unsigned long bit = ~(ULONG_MAX >> 1); // 10000...

 while (bit)

 { out << ((bit & b.num) ? '1' : '0'); // note bitwise-and.

 bit >>= 1; // shift bit one place to the right.

 }

 return out;

}

int main ()

{ int num = 17;

 cout << "The bit pattern for " << num << " is: " << bits(num)

 << endl;

 return 0;

}

//shows: The bit pattern for 145 is: 00000000000000000000000010010001

(The bits manipulator could be improved by having additional constructors for char, short, etc. The size of the type could also be stored as a private member. The output would then output an 8 bit string for a char, 16 for a short, etc.)

Some other uses for such manipulators are input to a string (rather than a cstring), formatted output of numbers (with commas, dollar signs, internationalized using <clocale>, or whatever), uppercase of strings, etc. Possible uses of these might look like:

string s; cin >> string_in(s); cout << upcase(s);

 int amount = 17000; cout << fmt(amount);

Such manipulators may take more than one argument. (Imagine the formatted output manipulator fmt having an optional second argument to control the number of decimal digits to show.) The possibilities are endless. (Note how similar effectors are to function objects or functors, which are used with the STL algorithms such as find_if. But that’s another story.)

References

It should be noted that the half-dozen or so sources I used in preparing this work disagree in some places about how iostreams work, what classes and members they have. Currently I don’t have a copy of the new ISO official base document or standard for this! (Even if there were such a standard, I’m certain Borland, Microsoft, Symantec, and all the C++ compilers would each work a little differently.) Both Lippman and Stroustrup are members of the C++ standards committee, and their books are the most recent, so I have used their descriptions when discrepancies arose.

All code samples have been tested on Borland C++ 5.02, MS visual C++ 6, and g++. However, the code samples have been updated to reflect the new ISO C++ standard and some errors may have crept in.

1. Eckel, B., Thinking in C++. 1st ed. 1995 Prentice Hall, Inc. Englewood Cliffs, New Jersey. pp 199-270.

2. Perry, P. J., et al., Using Borland C++ 4.5, Special Edition. 1994 Que, Indianapolis, IN. pp. 473–523.

3. Plauger, P. J., The Draft Standard C++ Library. 1995, Prentice Hall P T R Englewood Cliffs, NJ. 606 pages.

4. Lippman, Stanley B. and Lajoie, Josée, C++ Primer, Third Edition, (c) by AT&T 1998, pub. Addison-Wesley. Reading, Mass., 1259 pages. ISBN: 0–201–82470–1.

5. Stroustrup, Bjarne, The C++ Programming Language, Third edition, (C) 1999 by AT&T, pub. Addison-Wesley. Reading, Mass., 920 pages. ISBN: 0–201–88954–4.

6. Josuttis, Nicolai M., The C++ Standard Library, (c) 1999 by Addison Wesley Longman, Reading Mass., 819 pages, ISBN: 0–201–37926–0.

� EMBED MSDraw.Drawing.8 ���

©2000 Wayne Pollock, Tampa FL
I/O Streams in Standard C++
Page 16 of 27

[image: image2.wmf]ios

istream

ostream

iostream

streambuf

char buffer

real src

(or dest)

_985503023.unknown

