[image: image1.jpg]

Instructor: Abdulkadir GORUR

Time Allowed: 120 minutes

 Date: 3 / 06 / 2005

Name and Surname
:……………………………………………………………………

Student Number

 :…………………………………

· Write clearly
Part I

Solve Only ONE Question
Q1)

[image: image2.png]

b)Given an arbitrary binary tree T with integer keys stored at the nodes, design an effcient algorithm which determines whether or not T is a binary search tree. (25p)

Q2)

a)Number of leaves in a binary tree. Suppose you are given a binary tree with n internal nodes. Show that the number of leaves is n + 1. (5p)
b) Consider binary trees that have single characters stored at each internal node. Draw a binary tree that will spell out EXAMFUN upon a pre-order traversal and MAFXUEN upon an in-order one. (10p)
c)write a recursive function that counts and returns number of non-leaf nodes in binary tree.(10p)
Part II Solve Only One Question (10P)
Q1) Write a recursive function, power, which accepts a float and an int as input and returns the value of the float raised to the int power.

int 3;

float num=10.0;

num=power(num,3);

printf(“10^3 =%f”,num); // 10^3=1000.0
Q4)Write an Append() function that takes two linked lists, listA
and listB, appends listB onto the end of listA.

listA: 13->5->42->null

listB: 7->4->9->45->null

after call to append listA becomes

listA: 13->5->42->7->4->9->45->null
Part III Solve Only One Question (20P)
Q1) Write a function called InsertNth(...) that inserts new node into linked list for a given position.

tyepdef struct node{

int info;

struct node *next;

} Node;

int main()

{

struct node* head = NULL; // start with the empty list

head=InsertNth(head, 0, 13); // build {13->null)

head=InsertNth(head, 1, 42); // build {13->42->null }

head=InsertNth(head, 1, 5); // build {13->5->42->null }

}

Node *InsertNth(Node *head, int index)

{

Q2) Write a RemoveDuplicates() function which takes a list sorted in increasing order and deletes any duplicate nodes from the list. Ideally, the list should only be traversed once.

/* Remove duplicates from a sorted list. */

void RemoveDuplicates(struct node* head) {

// Your code...

Part IV Solve All the Questions

Q1)Consider stack S, which is initialized with values 17, 330, and 4, in that order (with 17 at the top of stack). What are the contents of S after the execution of the following code, where ‘push(&S,item)’ pushes a new value onto the top of the stack, and ‘pop(&S)’ removes the item from the top of the stack and returns its value: (5p)

int x = 7,i=0;

push(&S,32);

while(x != 20)

{

x = pop(&S);

x--;

push(&S,x);
i++
}
Q2) Consider a linked list whose members are integer numbers only. (20 P)
Write a function removeItems(NODE *head) function that removes the odd valued elements.
Consider following example:

Input LList:Listhead-> 4-> 3-> 4-> 2-> 7-> 7-> 1-> 9->12-> NULL
Output LList:Listhead-> 4 -> 4 -> 2 -> 12 -> NULL
Node * removeItems(NODE *head){

Q3) Difference of Two Sets (30p)
A set is probably the simplest kind of collection you can have. Here the objects are not usually ordered in any particular way at all and objects are simply added to the set without any control over where they go. The principal access mechanism that you have for a set is simply to check whether a given object is a member of the set or not. For this reason, you cannot have duplicate objects in a set Suppose we use the following struct definitions for a set of words.

typedef struct node {

char word[20]; // word is used to hold the word in a set

struct node* nextPtr; // link to the next node in a singly linked list

} NODE;

typedef struct set {

int size; // size is the number of words in the set object

struct node* head; // firstPtr points to first node of a singly linked list

}SET;

With these definitions, a set A contains A.size words in a singly linked list that puts one word in each node. The pointer A.head points to the first node of the list. The order of the words in the singly linked list is unimportant.

Assuming setA and setB is defined in main and populated with entries. Write a function which finds setC by using setA-setB
main()

{

 SET setA,setB,setC

/* here assume setA and setB is populated with entries */

.

.

.

difference(&setA,&setB,&setC);

displaySet(setC); /*assume this function is defined */

}

set A: ali bulent canan dogus

set B: canan dogus elif filiz

Output setC: ali bulent

Çankaya University

Department of Computer Engineering

CENG 218 Data Structures

Final Exam

Trace Table

i�
S�
x�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

a) Consider the tree pictured, is it a valid binary search tree? Why or why not? (5p)

Page 6 of 6

